第3章 NumPy:Python数值计算之源
3.3 多维数组的特征
3.3.2 轴与维度
1 2 3 4 5 6 7 8 9 10 11
| import numpy as np vector = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) tensor = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]) print('\n---向量---\n') print(vector) print('\n---矩阵---\n') print(matrix) print('\n---张量---\n') print(tensor)
|
---向量---
[1 2 3]
---矩阵---
[[1 2 3]
[4 5 6]]
---张量---
[[[1 2 3]
[4 5 6]]
[[1 2 3]
[4 5 6]]]
1 2 3 4
| print(matrix.ndim) print(matrix.shape) print(matrix.size)
|
2
(2, 3)
6
3.4 创建N维数组
3.4.1 np.array()——直接创建
1 2 3 4 5 6 7 8 9 10
| import numpy as np
a = np.array([1, 2, 3]) b = np.array([1, 2, 3], dtype=np.float_)
print(a) print(a.dtype) print(b) print(b.dtype)
|
[1 2 3]
int64
[1. 2. 3.]
float64
3.4.2 np.zeros()——根据shape参数创建数组
1 2 3 4 5 6 7 8
| import numpy as np a = np.zeros((2, 3)) b = np.zeros((2, 3), dtype=np.int_) print(a) print(a.dtype) print(b) print(b.dtype)
|
[[0. 0. 0.]
[0. 0. 0.]]
float64
[[0 0 0]
[0 0 0]]
int64
3.4.3 np.arange()——根据起点、终点和步长创建
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| import numpy as np a = np.arange(5) b = np.arange(3, 5) c = np.arange(3, 5, 0.5) d = np.arange(3, 5, 0.5, dtype=np.float32) print(a) print(a.dtype) print(b) print(b.dtype) print(c) print(c.dtype) print(d) print(d.dtype)
|
[0 1 2 3 4]
int64
[3 4]
int64
[3. 3.5 4. 4.5]
float64
[3. 3.5 4. 4.5]
float32
3.4.4 np.linspace()——根据起点、终点和元素数量创建
1 2 3 4 5 6 7 8
| import numpy as np a = np.linspace(3, 5, 4) b = np.linspace(3, 5, 4, dtype=np.float32) print(a) print(a.dtype) print(b) print(b.dtype)
|
[3. 3.66666667 4.33333333 5. ]
float64
[3. 3.6666667 4.3333335 5. ]
float32
3.4.5 np.random.randn()——生成符合标准正态分布的随机N维数组
1 2 3 4
| import numpy as np a = np.random.randn(3, 3) print(a)
|
[[ 0.22266599 -1.8125634 -0.64368513]
[-0.26829134 1.26109384 -0.72892426]
[-2.33863096 -0.39083497 0.61973089]]
3.5 数组间运算和广播运算
1 2 3 4 5 6 7 8
| import numpy as np a = np.array([1, 2, 3]) b = np.array([2, 4, 6]) print(a + b) print(a - b) print(a * b) print(a / b)
|
[3 6 9]
[-1 -2 -3]
[ 2 8 18]
[0.5 0.5 0.5]
1 2 3 4 5 6 7
| import numpy as np a = np.array([1, 2, 3]) print(a + 2) print(a - 2) print(a * 2) print(a / 2)
|
[3 4 5]
[-1 0 1]
[2 4 6]
[0.5 1. 1.5]
1 2 3 4 5 6 7 8 9 10 11 12 13
| import numpy as np a = np.array([1, 2, 3]) b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 1, 2], [3, 4, 5]]) print(a.shape) print(b.shape) c = a + b print(c) print(c.shape)
|
(3,)
(5, 3)
[[ 2 4 6]
[ 5 7 9]
[ 8 10 12]
[ 1 3 5]
[ 4 6 8]]
(5, 3)
1 2 3 4 5 6 7 8 9 10 11 12 13
| import numpy as np a = np.array([[1, 2, 3]]) b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 1, 2], [3, 4, 5]]) print(a.shape) print(b.shape) c = a + b print(c) print(c.shape)
|
(1, 3)
(5, 3)
[[ 2 4 6]
[ 5 7 9]
[ 8 10 12]
[ 1 3 5]
[ 4 6 8]]
(5, 3)
1 2 3 4 5 6 7 8
| import numpy as np t1 = np.array([[10.5, 13, 16.3], [12, 12.5, 15.5]]) t2 = np.array([[8.4, 7.2, 5.5], [7.1, 7.0, 6.0]]) t_mean = (t1 + t2) / 2 print(t_mean)
|
[[ 9.45 10.1 10.9 ]
[ 9.55 9.75 10.75]]
1 2 3 4 5
| import numpy as np t1 = np.array([[10.5, 13, 16.3], [12, 12.5, 15.5]]) print(t1 > 12)
|
[[False True True]
[False True True]]
1 2 3 4 5 6
| import numpy as np t1 = np.array([[10.5, 13, 16.3], [12, 12.5, 15.5]]) print((t1 > 12)| (t1 < 11)) print((t1 > 12)& (t1 < 13))
|
[[ True True True]
[False True True]]
[[False False False]
[False True False]]
3.6 多维数组的索引和切片
3.6.1 普通索引和切片
1 2 3 4 5 6 7 8 9 10
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a[0], '第一个维度索引为0的序列') print(a[:, 0], '第二个维度索引为0的序列') print(a[:2], '第一个维度索引为0、1的序列') print(a[:2, :2], '第一个维度索引为0、1且第二个维度索引为0、1的序列') print(a[::2, :], '第一个维度索引间隔2的序列')
|
[1 2 3] 第一个维度索引为0的序列
[1 4 7] 第二个维度索引为0的序列
[[1 2 3]
[4 5 6]] 第一个维度索引为0、1的序列
[[1 2]
[4 5]] 第一个维度索引为0、1且第二个维度索引为0、1的序列
[[1 2 3]
[7 8 9]] 第一个维度索引间隔2的序列
1 2 3 4 5 6 7
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a[1, 1] = 0 print(a)
|
[[1 2 3]
[4 0 6]
[7 8 9]]
1 2 3 4 5 6 7
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a[::2, :] = 0 print(a)
|
[[0 0 0]
[4 5 6]
[0 0 0]]
1 2 3 4 5 6
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a[:] = 0
|
3.6.2 高级索引
1 2 3 4 5 6 7
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a[a>4]) print(a[(a>4) & (a<8)])
|
[5 6 7 8 9]
[5 6 7]
1 2 3 4 5 6 7
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a[[0, 2]]) print(a[[0, 2], [1, 2]])
|
[[1 2 3]
[7 8 9]]
[2 9]
3.7 N维数组对象的方法
3.7.1 reshape()——改变数组形状
1 2 3 4 5 6 7 8 9 10 11
| import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) print(a) print(a.shape) b = a.reshape(2, 3) print(b) print(b.shape) c = a.reshape(6, 1) print(c) print(c.shape)
|
[1 2 3 4 5 6]
(6,)
[[1 2 3]
[4 5 6]]
(2, 3)
[[1]
[2]
[3]
[4]
[5]
[6]]
(6, 1)
1 2 3 4 5 6 7 8
| import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) print(a) print(a.shape) b = a.reshape(2, -1) print(b) print(b.shape)
|
[1 2 3 4 5 6]
(6,)
[[1 2 3]
[4 5 6]]
(2, 3)
1 2 3 4 5 6 7 8 9 10
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a) print(a.shape) b = a.reshape(-1) print(b) print(b.shape)
|
[[1 2 3]
[4 5 6]
[7 8 9]]
(3, 3)
[1 2 3 4 5 6 7 8 9]
(9,)
3.7.2 transpose()——交换轴
1 2 3 4 5 6
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a.transpose())
|
[[1 4 7]
[2 5 8]
[3 6 9]]
1 2 3 4 5 6
| import numpy as np a = np.zeros((10, 15, 25)) print(a.shape) b = a.transpose(1, 0, 2) print(b.shape)
|
(10, 15, 25)
(15, 10, 25)
3.7.3 mean()——计算平均值
1 2 3 4 5 6 7 8 9 10
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a.mean()) print(a.mean(axis=(0, 1))) print('由于数组a只有两个维度,所以axis=(0, 1)等价于对所有维度取平均值') print(a.mean(axis=0)) print(a.mean(axis=1))
|
5.0
5.0
由于数组a只有两个维度,所以axis=(0, 1)等价于对所有维度取平均值
[4. 5. 6.]
[2. 5. 8.]
3.7.4 sum()——计算元素和
1 2 3 4 5 6 7 8
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a.sum()) print(a.sum(axis=(0, 1))) print(a.sum(axis=0))
|
45
45
[12 15 18]
1 2 3 4 5 6 7 8
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a.std()) print(a.std(axis=(0, 1))) print(a.std(axis=0))
|
2.581988897471611
2.581988897471611
[2.44948974 2.44948974 2.44948974]
3.7.6 min()——取最小值/max()——取最大值
1 2 3 4 5 6 7 8 9 10 11
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a.max()) print(a.max(axis=(0, 1))) print(a.max(axis=0)) print(a.min()) print(a.min(axis=(0, 1))) print(a.min(axis=0))
|
9
9
[7 8 9]
1
1
[1 2 3]
3.7.7 round()——进行四舍五入
1 2 3 4 5 6 7
| import numpy as np a = np.array([[1.12, 2.25, 2.15], [4.03, 5.48, 6.75], [7.25, 7.35, 9.22]]) print(a.round()) print(a.round(1))
|
[[1. 2. 2.]
[4. 5. 7.]
[7. 7. 9.]]
[[1.1 2.2 2.2]
[4. 5.5 6.8]
[7.2 7.4 9.2]]
3.7.8 dot()——执行向量/矩阵乘法
1 2 3 4 5 6 7 8 9 10 11
| import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) b = np.array([[1, 2], [3, 4], [5, 6]]) print('shape_a=', a.shape) print('shape_b=', b.shape) c = a.dot(b) print(c)
|
shape_a= (2, 3)
shape_b= (3, 2)
[[22 28]
[49 64]]
1 2 3 4 5 6
| import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = a.dot(b) print(c)
|
32
3.7.9 astype()——转换数值类型
1 2 3 4 5 6 7 8 9
| import numpy as np a = np.array([1.2, 2.4, 3.5]) print(a.dtype) b = a.astype(np.float32) print(b.dtype) c = a.astype(np.int) print(c.dtype) print(c)
|
float64
float32
int64
[1 2 3]
3.10 文件读写
3.10.1 文本格式文件的读取
1 2 3 4 5 6 7 8
| import numpy as np a = np.genfromtxt('/home/mw/project/save_csv.csv', delimiter=',') print(a)
import numpy as np a = np.genfromtxt('/home/mw/project/save_txt.txt', delimiter=' ') print(a)
|
[[10.5 13. 16.3]
[12. 12.5 15.5]]
[[10.5 13. 16.3]
[12. 12.5 15.5]]
3.10.2 文本格式文件的写入
1 2 3 4 5 6 7 8 9 10
| import numpy as np a = np.array([[10.5, 13, 16.3], [12, 12.5, 15.5]]) np.savetxt('save_csv.csv', a, delimiter=',')
import numpy as np a = np.array([[10.5, 13, 16.3], [12, 12.5, 15.5]]) np.savetxt('save_txt.txt', a, delimiter=' ')
|
3.10.3 顺序二进制文件的读写
1 2 3 4 5 6
| import numpy as np a = np.fromfile('/home/mw/project/binary_raw.bin', dtype=np.float64) print(a) a = a.reshape((3, 3)) print(a)
|
[10.5 13. 16.3 12. 12.5 15.5 11.3 12.2 15.4]
[[10.5 13. 16.3]
[12. 12.5 15.5]
[11.3 12.2 15.4]]
1 2 3 4 5 6 7
| import numpy as np a = np.array([[10.5, 13, 16.3], [12, 12.5, 15.5], [11.3, 12.2, 15.4]]) print(a.dtype) a.tofile('binary_raw.bin')
|
float64